Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Cureus ; 15(1): e33831, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-20235790

ABSTRACT

Paxlovid (nirmatrelvir/ritonavir) is a game changer in the fight against COVID-19 due to its ease of administration and significant benefits of reducing progression to severe COVID-19, hospitalization, and death. Cardiac adverse events such as bradycardia and syncope are not known with this medication. We report a case of a 71-year-old patient who developed symptomatic bradycardia, syncopal episodes, and sinus pause after taking Paxlovid. Discontinuing medication and intravenous atropine helped to reverse the bradycardia and symptoms promptly. She did not require a pacemaker. We would like to report this possible association between Paxlovid and bradycardia. Until further information or studies are available, it is advised to promptly discontinue Paxlovid after any evidence of bradycardia and closely monitor for at least 40 hours in a hospital setting. The reported half-life (t 1/2) of the medication is 6.05 ± 1.79 hours and using 8 hours as a reference for the upper limit of t 1/2, around 97 % of the medication should be cleared off in about 40 hours (five half-lives).

2.
Emerg Microbes Infect ; 12(1): 2211688, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2312953

ABSTRACT

ABSTRACTThe main protease (3-chymotrypsin-like protease, 3CLpro) of SARS-CoV-2 has become a focus of anti-coronavirus research. Despite efforts, drug development targeting 3CLpro has been hampered by limitations in the currently available activity assays. Additionally, the emergence of 3CLpro mutations in circulating SARS-CoV-2 variants has raised concerns about potential resistance. Both emphasize the need for a more reliable, sensitive, and facile 3CLpro assay. Here, we report an orthogonal dual reporter-based gain-of-signal assay for measuring 3CLpro activity in living cells. It builds on the finding that 3CLpro induces cytotoxicity and reporter expression suppression, which can be rescued by its inhibitor or mutation. This assay circumvents most limitations in previously reported assays, especially false positives caused by nonspecific compounds and signal interference from test compounds. It is also convenient and robust for high throughput screening of compounds and comparing the drug susceptibilities of mutants. Using this assay, we screened 1789 compounds, including natural products and protease inhibitors, with 45 compounds that have been reported to inhibit SARS-CoV-2 3CLpro among them. Except for the approved drug PF-07321332, only five of these inhibit 3CLpro in our assays: GC376; PF-00835231; S-217622; Boceprevir; and Z-FA-FMK. The susceptibilities of seven 3CLpro mutants prevalent in circulating variants to PF-07321332, S-217622, and GC376 were also assessed. Three mutants were identified as being less susceptible to PF-07321322 (P132H) and S-217622 (G15S, T21I). This assay should greatly facilitate the development of novel 3CLpro-targeted drugs and the monitoring of the susceptibility of emerging SARS-CoV-2 variants to 3CLpro inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mutation , Peptide Hydrolases , Antiviral Agents/pharmacology
3.
Virol Sin ; 38(3): 470-479, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2320882

ABSTRACT

COVID-19 has become a global public health crisis since its outbreak in China in December 2019. Currently there are few clinically effective drugs to combat SARS-CoV-2 infection. The main protein (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 are involved in the viral replication, and might be prospective targets for anti-coronavirus drug development. Here, we investigated the antiviral activity of oridonin, a natural small-molecule compound, against SARS-CoV-2 infection in vitro. The time-of-addition analysis showed that oridonin efficiently inhibited SARS-CoV-2 infection by interfering with the genome replication at the post-entry stage. Mechanistically, the inhibition of viral replication by oridonin depends on the oxidation activity of α, ß-unsaturated carbonyl. Further experiments showed that oridonin not only effectively inhibited SARS-CoV-2 Mpro activity, but also had some inhibitory effects on PLpro-mediated deubiquitinating and viral polymerase-catalyzed RNA elongation activities at high concentrations. In particular, oridonin could inhibit the bat SARS-like CoV and the newly emerged SARS-CoV-2 omicron variants (BA.1 and BA.2), which highlights its potential as a pan-coronavirus antiviral agent. Overall, our data provide strong evidence that oridonin is an efficient antiviral agent against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Protease Inhibitors/pharmacology
4.
Microbiol Spectr ; 11(3): e0431122, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2317294

ABSTRACT

Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms.


Subject(s)
Anti-HIV Agents , COVID-19 , Adult , Humans , SARS-CoV-2 , Nelfinavir/adverse effects , Time Factors , Treatment Outcome
5.
Magyar Allatorvosok Lapja ; 144(9):527-542, 2022.
Article in English | Web of Science | ID: covidwho-2311212

ABSTRACT

The authors summarize the current knowledge about FIP (feline infectious peritonitis) using the latest scientific literature and their own experiences. The feline coronaviruses, both the feline enteric coronavirus (FECV) and the FIP virus (FIPV) belong to the same Alphacoronavirus 1 species, in the Alphacoronavirus genus within the Coronaviridae family, and infect wild and domestic felids. FIPV is the mutated form of the ubiquitous and contagious feline enteric coronavirus, which, in contrast, causes a fatal and non-infectious illness. The lethal disease develops in only a subset of infected cats as a result of complex immunopathological processes. The clinical manifestation of the disease is very diverse. the effusive form ("wet form") has a more rapid course than the non-effusive form ("dry form"). However, these two main manifestations are rather the endpoints of a continuum of diseases. Macroscopically the wet form is characterized by effusions in the serosal cavities, and the dry form by perivascular (pyo)granulomas in the organs. The most characteristic histoogical lesions are granulomatou's to necrotizing vasculitis in the wet form, and vasocentric pyogranulomatous inflammation in the dry form. Ante-mortem diagnosis of the disease is challenging yet extremely important, partially because of recent successes in therapy. The most reliable diagnosis is likely to be made only post-mortem, but a properly constructed diagnostic workflow can be similarly effective. Although the active substances of previous successful therapies are relatively easily available, they are not approved for veterinary use. In the absence of an effective vaccine, prevention is based mainly on epidemiological considerations and the reduction of stressors that unnecessarily affect the cats. Presenting the example of FIP and COVID-19, it is perfectly understandable why the experience of different drugs in the treatment of animal coronaviral infections can be of tremendous value in preparing their use in human experiments.

6.
Clin Infect Dis ; 76(8): 1403-1411, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2300490

ABSTRACT

BACKGROUND: This phase 2b part of a randomized phase 2/3 study assessed the efficacy and safety of ensitrelvir for mild-to-moderate coronavirus disease 2019 (COVID-19) during the Omicron epidemic. METHODS: Patients were randomized (1:1:1) to orally receive ensitrelvir fumaric acid 125 mg (375 mg on day 1) or 250 mg (750 mg on day 1) or placebo once daily for 5 days. The co-primary endpoints were the change from baseline in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) titer on day 4 and time-weighted average change from baseline up to 120 hours in the total score of predefined 12 COVID-19 symptoms. Safety was assessed through adverse events. RESULTS: A total of 341 patients (ensitrelvir 125-mg group: 114; ensitrelvir 250-mg group: 116; and placebo group: 111; male: 53.5-64.9%; mean age: 35.3-37.3 years) were included in the efficacy analyses. The change from baseline in SARS-CoV-2 titer on day 4 was significantly greater with both ensitrelvir doses than with placebo (differences from placebo: -0.41 log10 50% tissue-culture infectious dose/mL; P < .0001 for both). The total score of the 12 COVID-19 symptoms did not show a significant difference between the ensitrelvir groups and placebo group. The time-weighted average change from baseline up to 120 hours was significantly greater with ensitrelvir versus placebo in several subtotal scores, including acute symptoms and respiratory symptoms. Most adverse events were mild in severity. CONCLUSIONS: Ensitrelvir treatment demonstrated a favorable antiviral efficacy and potential clinical benefit with an acceptable safety profile. CLINICAL TRIALS REGISTRATION: Japan Registry of Clinical Trials: jRCT2031210350 (https://jrct.niph.go.jp/en-latest-detail/jRCT2031210350).


Subject(s)
COVID-19 , Epidemics , Humans , Male , Adult , SARS-CoV-2 , Antiviral Agents/adverse effects
7.
Antiviral Res ; 214: 105606, 2023 06.
Article in English | MEDLINE | ID: covidwho-2298798

ABSTRACT

The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate for broad-spectrum antiviral therapy that could rapidly respond to emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cathepsin L/metabolism , Peptide Hydrolases , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Antiviral Agents/pharmacology , Serine Endopeptidases/pharmacology
8.
Biology (Basel) ; 12(4)2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2291265

ABSTRACT

The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with the current computation advancements. Here, a dataset of 406,747 unique NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of 7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7; 57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment of COVID-19 symptoms.

9.
EBioMedicine ; 91: 104559, 2023 May.
Article in English | MEDLINE | ID: covidwho-2296914

ABSTRACT

BACKGROUND: Nirmatrelvir-ritonavir (Paxlovid) and ensitrelvir are 3-chymotrypsin-like cysteine protease (3CLpro) inhibitors which have been approved for the treatment of COVID-19 in 2021 and 2022, respectively. Previous studies have identified 3CLpro mutations that are associated with reduced susceptibility to these antivirals. The aim of the current study was to estimate the global prevalence of 3CLpro inhibitor-resistant SARS-CoV-2 strains. METHODS: We compiled a list of 3CLpro mutations which have been associated with nirmatrelvir or ensitrelvir resistance based on either viral replication or 3CLpro activity assays, and determined their prevalence among 13.4 million sequences deposited in GISAID as of December 14, 2022, about 1 year after the approval of nirmatrelvir-ritonavir. We analyzed the prevalence for different time periods, SARS-CoV-2 lineages and geographical locations. FINDINGS: Overall, 0.5% (67,095/13,446,588) of the sequences contained at least one mutation that was shown to affect the inhibitory activity of nirmatrelvir or ensitrelvir on viral replication or 3CLpro activity. We did not observe any increasing trend of resistance after the widespread clinical use of nirmatrelvir-ritonavir. G15S (2070 per million) and T21I (1386 per million) were the most prevalent mutations, and these mutations were dominant in some SARS-CoV-2 lineages. E166V and S144E, previously shown to affect the inhibitory activity of nirmatrelvir on viral replication or protease activity by > 100-folds, were found in <1 per million sequences. INTERPRETATION: Our data suggest that 3CLpro inhibitor resistance is currently rare. However, continuous global genotypic and phenotypic surveillance would be crucial in the early detection of resistant mutants. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service, the Emergency Key Program of Guangzhou Laboratory (See acknowledgements for full list).


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , Ritonavir , SARS-CoV-2/genetics , Prevalence , COVID-19/epidemiology , Endopeptidases , Mutation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
10.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2306412

ABSTRACT

3C proteases (3Cpros) of picornaviruses and 3C-like proteases (3CLpros) of coronaviruses and caliciviruses represent a group of structurally and functionally related viral proteases that play pleiotropic roles in supporting the viral life cycle and subverting host antiviral responses. The design and screening for 3C/3CLpro inhibitors may contribute to the development broad-spectrum antiviral therapeutics against viral diseases related to these three families. However, current screening strategies cannot simultaneously assess a compound's cytotoxicity and its impact on enzymatic activity and protease-mediated physiological processes. The viral induction of stress granules (SGs) in host cells acts as an important antiviral stress response by blocking viral translation and stimulating the host immune response. Most of these viruses have evolved 3C/3CLpro-mediated cleavage of SG core protein G3BP1 to counteract SG formation and disrupt the host defense. Yet, there are no SG-based strategies screening for 3C/3CLpro inhibitors. Here, we developed a fluorescence resonance energy transfer (FRET) and SG dual-based system to screen for 3C/3CLpro inhibitors in living cells. We took advantage of FRET to evaluate the protease activity of poliovirus (PV) 3Cpro and live-monitor cellular SG dynamics to cross-verify its effect on the host antiviral response. Our drug screen uncovered a novel role of Telaprevir and Trifluridine as inhibitors of PV 3Cpro. Moreover, Telaprevir and Trifluridine also modulated 3Cpro-mediated physiological processes, including the cleavage of host proteins, inhibition of the innate immune response, and consequent facilitation of viral replication. Taken together, the FRET and SG dual-based system exhibits a promising potential in the screening for inhibitors of viral proteases that cleave G3BP1.


Subject(s)
Fluorescence Resonance Energy Transfer , Viral Protease Inhibitors , Humans , DNA Helicases/metabolism , Trifluridine , Stress Granules , Viral Proteins/metabolism , RNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Recognition Motif Proteins/metabolism , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology
11.
Cureus ; 15(3): e36528, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2306283

ABSTRACT

Acute pancreatitis can result secondary to an inflammatory cascade due to an insult to the pancreatic parenchyma, whether it be from infections, medications, etc. We present a case of a 37-year-old male with acute pancreatitis after being started on Paxlovid, a combination drug containing Nirmatrelvir and Ritonavir, for COVID-19 treatment. Multiple reports in the literature have documented such an association between acute pancreatitis and the protease inhibitor Ritonavir. We suspect that similar results may have taken place that link the initiation of this medication with pancreatic inflammation.

12.
Vietnam Journal of Science and Technology ; 58(6):665-675, 2020.
Article in English | Scopus | ID: covidwho-2277269

ABSTRACT

The infection by the new coronavirus SARS-CoV-2 (called as COVID-19 disease) is a worldwide emergency, however, there is no antiviral treatment or vaccine to date. 3C like protease (3CLpro) is the main protease of SARS-CoV-2 that involved in the process of translation of the polypeptide from the genomic RNA to protein components, which are required for virus replication. The crystal structure of this protease has been rapidly resolved and made publicly in the Protein Data Bank recently. Many efforts have been conducted by scientists including the use of several commercial medicines that are known for treatment of HIV and anti-malarial/antibiotic such as arbidol, chloroquine, hydroxychloroquine, azithromycin, darunavir, remdesivir and lopinavir/ritonavir. These drugs exhibited significant efficacy in clinical, however, the understanding at atomic level of how these compounds prevent SARS-CoV-2 protease is still lacking. Therefore, in this context docking protocol was employed to rapidly estimate the binding affinity and binding pose of six drugs on the main protease of SARS-CoV-2 virus. The obtained results might help to shed light on the interaction mechanism of these compounds toward the protein, and thus suggesting an efficient approach to drug discovery and treatments. © 2020, Publishing House of Natural Science and Technology, VAST. All rights reserved.

13.
Organic Process Research and Development ; 2022.
Article in English | Scopus | ID: covidwho-2249115

ABSTRACT

Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage. As a new approach to preparing the indole fragment, a Cu-catalyzed C-O coupling using oxalamide ligands was demonstrated. The control of process-related impurities was essential to accommodate the parenteral formulation. Isolation of an MEK solvate followed by the DMSO solvate ensured that all impurities were controlled appropriately. © 2023 American Chemical Society.

14.
Bioorg Med Chem Lett ; 86: 129238, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2261577

ABSTRACT

The ongoing COVID-19 pandemic has led to massive infections and deaths and caused tremendous grief among the people. Although vaccines have played an important role in fighting COVID-19, the situation that the protective effect of current vaccines significantly decreases against mutated strains reminds us of the pressing need for developing effective antiviral therapeutics. The main protease (Mpro) is a key enzyme for SARS-CoV-2 viral replication and transcription and an attractive target for drug development. In this research, we report a new series of Mpro inhibitors containing 3-phenyl-1,2,4-oxadiazole. Structure-activity relationship (SAR) studies led to the discovery of the most active compound, 16d, which showed an IC50 value of 5.27 ± 0.26 µM. Collectively, we obtained a new small molecular inhibitor targeting SARS-CoV-2 Mpro, which contains a new scaffold. This compound could be taken as a lead compound for subsequent drug discovery against SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Molecular Docking Simulation
15.
Journal of Chemical Research ; 47(1), 2023.
Article in English | Scopus | ID: covidwho-2246570

ABSTRACT

The 3C-like protease (also known as Mpro) plays a key role in SARS-CoV-2 replication and has similar substrates across mutant coronaviruses, making it an ideal drug target. We synthesized 19 thiazolidinedione derivatives via the Knoevenagel condensations and Mitsunobu reactions as potential 3C-like protease inhibitors. The activity of these inhibitors is screened in vitro by employing the enzymatic screening model of 3C-like protease using fluorescence resonance energy transfer. Dithiothreitol is included in the enzymatic reaction system to avoid non-specific enzymatic inhibition. Active inhibitors with diverse activity are found in this series of compounds, and two representative inhibitors with potent inhibitory activity are highlighted. © The Author(s) 2023.

16.
Int J Infect Dis ; 128: 148-156, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2244274

ABSTRACT

OBJECTIVES: We performed a pilot study of upamostat, a serine protease inhibitor, in outpatients with symptomatic COVID-19 before a pivotal trial. METHODS: SARS-CoV-2 patients with ≥2 moderate-severe symptoms onset within 5 days were randomized to oral upamostat 200 or 400 mg or placebo daily for 14 days. Patients completed COVID-19 symptom questionnaires daily for 28 days, then thrice weekly for 4 weeks, and underwent physical and laboratory examinations periodically. RESULTS: A total of 61 patients enrolled of which 20 received a placebo or upamostat 200 mg daily; 21 received upamostat 400 mg daily. Treatment was well tolerated; only one patient (upamostat 400) reported a drug-related adverse event, mild skin rash; no patient discontinued owing to a drug-related adverse event. The median time to a sustained recovery from severe symptoms was 8, 4, and 3 days for the three treatment groups, respectively. New severe symptoms developed in 20% of the placebo group vs 2.4% in the combined upamostat groups, (P = 0.036). Three placebo patients (15%) versus no upamostat patients were hospitalized for worsening COVID (P= 0.03). The mean d-dimer level remained constant in placebo patients but decreased by 38% and 48% in upamostat 200 and 400 patients, respectively. CONCLUSION: Upamostat was well tolerated, shortened recovery time, and decreased new severe symptoms and hospitalization.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pilot Projects , Outpatients , Serine Proteinase Inhibitors , Treatment Outcome , Double-Blind Method
17.
J Med Virol ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2237208

ABSTRACT

we designed a functionally active Mpro biosensor based on a dimerization-dependent red fluorescent protein (ddRFP) for the evaluation of Mpro inhibitors in vitro. This study provides an affordable strategy for rapid production of a versatile ddRFP biosensor, which would be a useful tool for the measurement and quantification of Mpro inhibitors This article is protected by copyright. All rights reserved.

18.
J Med Virol ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2236944

ABSTRACT

Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.

19.
Curr Top Med Chem ; 2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-2228629

ABSTRACT

The new pandemic produced by coronavirus (SARS-CoV-2) has becomes the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies on available vaccines. A huge research effort (clinical, experimental, and computational) has emerged in response to this pandemic, and more than 125000 research reports have been published in relation with COVID-19. The majority of them focused on the discovery of novel drug candidates or repurposing of existing drugs through computational approaches that significantly speed up drug discovery. Among the different used targets, the SARS-CoV-2 main protease (Mpro), which plays an essential role in coronavirus replication, has become the preferred target for computational studies. In this review, we examine a representative set of computational studies that uses the Mpro as target for the discovery of COVID-19 small molecules. They will be divided into two main groups, structure-based, and ligand-based methods, and each one will be subdivided according to the strategies used in the research. From our point of view, the use of combined strategies could enhance the possibilities of success in the future, permitting to develop more rigorous computational studies in future efforts to combat current and future pandemics.

20.
Int Immunopharmacol ; 116: 109597, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2210529

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. Crohn's disease (CD) and Ulcerative colitis (UC) are the two major types affecting millions across the globe. Various immunomodulatory drugs consisting of small molecules (thiopurines, methotrexate and tofacitinib) and biologics are used to treat IBD. Thiopurines (TP) are widely used in the treatment of IBD and it plays an important role both alone and in combination with anti-TNF agents as IBD maintenance therapy. Although the advent of biologics therapy has significantly advanced the management of IBD, TP remains the mainstay of treatment in resource-limited and low economic settings. However, the recently commenced pandemic has raised uncertainty over the safety of the use of immunosuppressant drugs such as TP among healthcare care providers and patients, as there is a scarcity of data on whether IBD patients are at higher risk of COVID-19 infection or more prone to its severe outcomes. AIM: This review aims to encapsulate evidence on the risk of COVID-19 infection and its severe prognosis in IBD patients on TP. Additionally, it also evaluates the role of TP in inhibiting the viral protease, a potential drug target, essential for the replication and pathogenesis of the virus. CONCLUSION: Emerging evidence suggests that TP therapy is safe during the current pandemic and does not carry an elevated risk when used as monotherapy or in combination with other IBD drugs. In-vitro studies demonstrate that TP is a potential therapeutic for present and future betacoronavirus pandemics.


Subject(s)
COVID-19 , Crohn Disease , Inflammatory Bowel Diseases , Humans , Pandemics , Tumor Necrosis Factor Inhibitors/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Crohn Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL